
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle Année 2025-26

Feuille exercices de bac – Bdd – Correction

Exercice 1 : Cet exercice porte sur la programmation Python, la programmation orientée objet,
les bases de données relationnelles et les requêtes SQL.
L’objectif est de faciliter la gestion du système d’information d’un camping municipal. Les
informations nécessaires sont stockées dans une base de données relationnelle composée de
trois relations. On pourra utiliser les mots-clés SQL suivants : AND, FROM, INSERT INTO, JOIN,
ON, SELECT, SET, UPDATE, VALUES, WHERE.
Voici le schéma des deux premières relations :
Client (id_client, nom, prenom, adresse, ville, pays, telephone)
Reservation (id_reservation , #id_client, #id_emplacement, nombre_personne,

date_arrivee, date_depart)
Dans ce schéma :
• la clé primaire de chaque relation est définie par son attribut souligné ;
• les attributs précédés de # sont les clés étrangères.
La troisième relation est appelée Emplacement et elle contient tous les emplacements du
camping. Le tableau ci-dessous en donne un extrait.

Emplacement
id_emplacement nom localisation tarif_journalier

1 myrtille A4 25
2 mirabelle D1 35
3 mangue B2 29.90
4 mandarine B1 25
5 mûre C3 29.90
6 melon A2 25

Partie A

1) Citer deux avantages à utiliser une base de données relationnelle plutôt qu’un fichier
texte ou un fichier tableur.
Solution : Cela permet d’assurer la cohérence des données, de faciliter les requètes et de
faire plusieurs tables.

2) Quelle doit être la caractéristique d’un attribut pour pouvoir être utilisé en tant que clé
primaire?
Solution : Il faut que toutes ses valeurs soient uniques.

3) Dans la relation Reservation, quel est le rôle des clés étrangères id_client et id_emplacement?

Solution : Les clés étrangères servent à relier la réservation au client qui l’a faite et à
l’emplacement qui est loué.

4) Donner le schéma relationnel de la relation Emplacement en précisant la clé primaire et
le type de chacun des attributs.
Solution : Emplacement (id_emplacement (INT), nom (TEXT), localisation (CHAR(2)),
tarif_journalier (FLOAT))

5) À partir de l’extrait du contenu de
la relation Emplacement donner le
résultat de la requête ci-contre :

SELECT id_emplacement, nom, localisation
FROM Emplacement
WHERE tarif_journalier = 25;

1/8

Solution : On obtient :
id_emplacement nom localisation

1 myrtille A4
4 mandarine B1
6 melon A2

6) Écrire une requête permettant de donner le nom et le prenom de tous les clients habitant
à ’Strasbourg’.
Solution : On peut faire :
SELECT nom, prenom FROM Client WHERE ville = "Strasbourg";

7) Écrire une requête permettant d’ajouter un nouveau client :
• id_client 42 ;
• nom ’CODD’ ;
• prénom ’Edgar’ ;

• adresse ’28 rue des Capucines’ ;
• ville ’Lyon’ ;
• pays ’France’ ;

• numéro de téléphone ’0555555555’.
Solution :
INSERT INTO CLient VALUES (42, 'CODD', 'Edgar', '28 rue des Capucines',

'Lyon', 'France', '0555555555') ;

8) Écrire une requête SQL permettant de récupérer les informations ci-dessous concernant
la réservation dont l’identifiant id_reservation est 18 :
• Client.nom
• Client.prenom
• Reservation.nombre_personne

• Reservation.date_arrivee
• Reservation.date_depart
• Emplacement.tarif_journalier

Solution :
SELECT Client.nom, prenom, nombre_personne, date_arrivee,

date_depart, tarif_journalier FROM Client
JOIN Reservation ON Client.id_client = Reservation.id_client
JOIN Emplacement ON Emplacement.id_emplacement=Reservation.id_emplacement
WHERE id_reservation = 18;

Partie B
Dans cette partie, on souhaite éditer une facture correspondant au séjour d’un client. Pour
cela, on dispose d’une fonction Python qui récupère auprès de la base de données, à la
manière de la question 8, les informations concernant la réservation voulue et renvoie le
résultat sous forme d’un tuple contenant trois objets respectivement des classes Client,
Reservation et Emplacement.

from datetime import datetime

class Client:
def __init__(self, nom, prenom, adresse, ville, pays, telephone):

self.nom = nom
self.prenom = prenom
self.adresse = adresse
self.ville = ville
self.pays = pays
self.telephone = telephone

class Reservation:
def __init__(self, id_reservation, nombre_personne,

date_arrivee, date_depart):

Thème 2 : Exercices bac Bdd 2/8 NSI Tle

self.id_reservation = id_reservation
self.nombre_personne = nombre_personne
self.date_arrivee = date_arrivee
self.date_depart = date_depart

def nb_jours(self):
""" renvoie, à l'aide de l'attribut days de la classe

timedelta, un entier correspondant
au nombre de jours passés au camping."""

return (self.date_depart - self.date_arrivee).days

class Emplacement:
def __init__(self, nom, tarif_journalier):

self.nom = nom
self.tarif_journalier = tarif_journalier

9) Expliquer pourquoi le terme self est utilisé comme paramètre pour les méthodes des
classes Client, Reservation et Emplacement.
Solution : self permet de faire référence à l’objet utilisé pour appeler les méthodes ou
pour accéder aux attributs.

10) Instancier une variable client01 de la classe Client représentant un client se nommant
CODD Edgar habitant au 28 rue des Capucines à Lyon, France, ayant pour numéro de
téléphone le 0555555555.
Solution :
client01 = Client('CODD', 'Edgar', '28 rue des Capucines', 'Lyon', 'France', '0555555555')

On considère un tuple constitué de trois objets, respectivement dans cet ordre, des classes
Client, Reservation et Emplacement. On souhaite écrire une fonction qui renvoie le mon-
tant dû par ce client pour cet emplacement et pour cette durée de séjour. Sachant qu’au tarif
journalier de location de l’emplacement il faut ajouter une taxe de séjour de 2,20 =C par jour
et par personne.
Exemple de calcul du montant à régler pour un client ayant réservé pour 4 personnes pen-
dant 12 jours un emplacement à 30 =C la journée :

>>> 30 * 12 + 4 * 2.20 * 12
465.6

11) Compléter la dernière ligne de la fonction montant_a_regler.
def montant_a_regler(triplet):

""" renvoie le montant en euros à régler pour cette réservation """
client, reservation, emplacement = triplet
nbj = reservation.nb_jours()
tarif = emplacement.tarif_journalier
nbp = reservation.nombre_personne
return nbj*tarif + nbp*2.20*nbj

Chaque facture doit posséder ce que l’on appelle communément un numéro de facture
unique. En réalité il s’agit d’une chaîne de caractères. Pour ses factures, depuis 2018, le cam-
ping a adopté le format 'AAAA-MMM-xxx' composé des trois chaînes de caractères ci-dessous :
• 'AAAA' une année comprise entre 2018 et 2024 ;
• 'MMM' les trois premières lettres du mois en anglais ;

Thème 2 : Exercices bac Bdd 3/8 NSI Tle

• 'xxx' désigne trois chiffres.
On décide d’écrire une fonction facture_est_valide pour tester si une chaîne de caractères
représente un numéro de facture valide ou non. Voici quelques exemples du comportement
attendu de la fonction facture_est_valide.

>>> facture_est_valide('2024-MAY-230')
True
>>> facture_est_valide('2012-MAY-230')
False
>>> facture_est_valide('2024-MAI-230')
False
>>> facture_est_valide('2024-JUN-23')
False

On considère le programme suivant :

1 calendrier = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN',
2 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']
3
4 def separe(chaine):
5 # renvoie une liste constituée de chaînes qui étaient
6 # séparées par le caractère -
7 return chaine.split('-')
8
9 def que_des_chiffres(chaine):

10 """ renvoie vrai si chaine n'est constituée que
11 des caractères de 0 à 9 faux sinon """
12 for car in chaine:
13 if not(car in "0123456789"):
14 return False
15 return True

17 def facture_est_valide(chaine):
18 """ renvoie vrai si chaine est une chaîne de
19 caractères conforme au modèle de facture """
20 partie = separe(chaine)
21 if not(len(partie) == 3):
22 return False
23 annee, mois, numero = partie[0], partie[1], partie[2]
24 if not(que_des_chiffres(annee)):
25 return False
26 if not(len(annee) == 4) or not(2018 <= annee <= 2024):
27 return False
28 # Reste à faire vérifier les mois MMM
29 ...
30 # Reste à faire vérifier le numéro xxx
31 ...
32 return True

On rappelle que la fonction split en Python divise une chaîne de caractères en une liste de
sous-chaînes en fonction d’un séparateur spécifié.
Par exemple :
texte = 'Bonjour-le-monde'

Thème 2 : Exercices bac Bdd 4/8 NSI Tle

separateur = '-'
resultat = texte.split(separateur)
donne comme résultat ['Bonjour', 'le', 'monde']

12) Expliquer pourquoi une erreur se produit à l’exécution de la fonction facture_est_valide
donnée ci-dessus.
Solution : À la ligne 26, l’expression 2018 <= annee <= 2024 compare des nombres à
un texte (annee). Cela provoque une erreur.

13) Proposer une correction du code pour que cette erreur ne se produise plus.
Solution : On peut mettre 2018 <= int(annee) <= 2024 à la place.

14) Compléter le code afin de vérifier les mois (ligne 29) et le numéro (ligne 31) dans la
fonction facture_est_valide. Pour chaque vérification, il est possible d’insérer une ou
plusieurs lignes.
Solution : Il faut rajouter :

Reste à faire vérifier les mois MMM
if mois not in calendrier:

return False
Reste à faire vérifier le numéro xxx
if len(numero) != 3 or not que_des_chiffres(numero):

return False
return True

Exercice 2 : Cet exercice porte sur les bases de données relationnelles, les requêtes SQL et la
programmation en Python.
L’énoncé de cet exercice utilise des mots-clés du langage SQL suivants : SELECT, FROM, WHERE,
JOIN ... ON, UPDATE ... SET, INSERT INTO ... VALUES ..., COUNT, ORDER BY.
La clause ORDER BY suivie d’un attribut permet de trier les résultats par ordre croissant de
l’attribut précisé. SELECT COUNT(∗) renvoie le nombre de lignes d’une requête.
Amélie souhaite organiser sa collection de CD. Elle a commencé par enregistrer toutes les
informations sur un fichier CSV mais elle trouve que la recherche d’informations est longue
et fastidieuse. Elle repense à son cours sur les bases de données et elle se dit qu’elle doit
pouvoir utiliser une base de données relationnelle pour organiser sa collection.
Partie A
Dans cette partie on utilise une seule table. Voici un extrait de la table Chanson.

Chanson
id titre album groupe
1 Sunburn Showbiz Muse
2 Muscle Museum Showbiz Muse
3 Showbiz Showbiz Muse
4 New Born Origin of Symmetry Muse
5 Sing for Absolution Absolution Muse
6 Hysteria Absolution Muse
7 Welcome too the Jungle Appetite for Destruction Guns N’ Roses
8 Muscle Museum Hullabaloo Muse
9 Showbiz Hullabaloo Muse

1) L’attribut titre peut-il être une clé primaire pour la table Chanson? Justifier.
Solution : Il y a 2 fois le titre Muscle Museum. Cet attribut ne peut donc pas être une clé
primaire.

2) Donner le résultat de la requête suivante :
SELECT titre, album FROM Chanson WHERE groupe = "Guns N' Roses";

Thème 2 : Exercices bac Bdd 5/8 NSI Tle

Solution : On obtient les titres des chansons et albums de Guns N’ Roses. Depuis l’extrait,
on obtient juste Welcome to the Jungle de l’album Appetite for Destruction.

3) Écrire une requête SQL permettant d’obtenir tous les titres des chansons de l’album
Showbiz dans l’ordre croissant.
Solution :
SELECT titre, FROM Chanson
WHERE album = "Showbiz"
ORDER BY titre;

4) Écrire une requête SQL permettant d’ajouter la chanson dont le titre est Megalomania de
l’album Hullabaloo du groupe Muse.
Solution :

INSERT INTO Chanson VALUES (10, ’Megalomania’, ’Hullabaloo’, ’Muse’);

Amélie a remarqué une faute de frappe dans
la chanson Welcome too the Jungle qui s’écrit
normalement Welcome to the Jungle.
5) Écrire une requête SQL permettant de

corriger cette erreur.
Solution :
UPDATE Chanson
SET titre = 'Welcome to the Jungle'
WHERE titre = 'Welcome too the Jungle'

Partie B
Dans cette partie on utilise trois tables. Voici
des extraits des trois tables Chanson, Album et
Groupe.

Chanson
id titre id_album
1 Sunburn 1
2 Muscle Museum 1
3 Showbiz 1
4 New Born 2
5 Sing for Absolution 4
6 Hysteria 4
7 Welcome to the Jungle 5
8 Muscle Museum 3
9 Showbiz 3

Album
id titre année id_groupe
1 Showbiz 1999 1
2 Origin of Symmetry 2001 1
3 Hullabaloo 2002 1
4 Absolution 2003 1
5 Appetite for Destruction 1987 2

Groupe
id nom
1 Muse
2 Gun N’ Roses

6) Expliquer l’intérêt d’utiliser trois tables Chanson, Album et Groupe au lieu de regrouper
toutes les informations dans une seule table.
Solution : Séparer les données en 3 tables permet de ne pas avoir à répéter les informa-
tions sur chaque groupe ou sur chaque album à chaque chanson.

7) Expliquer le rôle de l’attribut id_album de la table Chanson.
Solution : Cet attribut sert de clé étrangère. Il sert à relier la chanson à l’album corres-
pondant.

8) Proposer alors un schéma relationnel pour cette version de la base de données. On pen-
sera à bien spécifier les clés primaires en les soulignant et les clés étrangères en les faisant
précéder par le symbole #.
Solution : Chanson (id, titre, #id_album)
Album (id, titre, annee, #id_groupe)

Groupe (id, nom)

9) Écrire une requête SQL permettant d’obtenir tous les noms des albums contenant la
chanson Showbiz.

Thème 2 : Exercices bac Bdd 6/8 NSI Tle

Solution :
SELECT Album.titre FROM Album
JOIN Chanson ON id_album = Album.id
WHERE Chanson.titre = 'Showbiz';

10) Écrire une requête SQL permettant
d’obtenir tous les titres avec le nom de
l’album des chansons du groupe Muse.

11) Décrire par une phrase ce qu’effectue la
requête SQL ci-contre :

SELECT COUNT(∗) AS tot FROM Album AS a
JOIN Groupe AS g ON a.id_groupe = g.id
WHERE g.nom = 'Muse';

Solution :
10) On peut écrire :

SELECT Chanson.titre, Album.titre FROM Chanson
JOIN Album ON id_album = Album.id
JOIN Groupe ON id_groupe = Groupe.id
WHERE Groupe.nom = 'MUSE';

11) On obtient le nombre d’albums du groupe Muse.
Partie C
Dans cette partie, on utilise Python.
Amélie a remarqué que son professeur ne parle jamais d’ordre alphabétique mais d’ordre
lexicographique lorsqu’il fait une requête avec ORDER BY.
Elle a compris qu’il s’agissait de l’ordre du dictionnaire mais elle se demande comment elle
pourrait elle-même écrire une fonction ordre_lex(mot1, mot2) de comparaison entre deux
chaînes de caractères en utilisant l’ordre lexicographique. La fonction ordre_lex(mot1, mot2)
prend en arguments deux chaines de caractères et renvoie un booléen. Une rapide recherche
lui permet de trouver le résultat suivant :
Lorsque l’on compare deux chaînes de caractères suivant l’ordre lexicographique, on commence
par comparer les deux premiers caractères de chacune des deux chaînes, puis en cas d’égalité on
s’intéresse au second, et ainsi de suite. Le classement est donc le même que celui d’un dictionnaire.
Si lors de ce procédé on dépasse la longueur d’une seule des deux chaînes, elle est considérée plus
petite que l’autre. Lorsqu’on dépasse la longueur des deux chaînes au même moment, elles sont
nécessairement égales.
Amélie commence par écrire
quelques assertions que sa fonc-
tion devra vérifier.

assert ordre_lex("", "a") == True
assert ordre_lex("b", "a") == False
assert ordre_lex("aaa", "aaba") == True

12) Compléter les assertions ci-dessus.

On suppose que les chaînes de caractères mot1 et mot2 ne sont
composées que des lettres de l’alphabet, en minuscule, et la
comparaison entre deux lettres peut se faire avec les opéra-
teurs classiques == et <.
Par exemple :

>>> "" < "a"
True
>>> "b" == "a"
False

Enfin, le slice mot1[1:] renvoie la chaîne de caractère de mot1
privée de son premier caractère.
Par exemple :

>>> mot1 = "abcde"
>>> mot2 = mot1[1:]
>>> mot2
"bcde"

13) Recopier et compléter la fonction récursive ordre_lex ci-dessous qui prend pour para-
mètre deux chaînes de caractères mot1 et mot2 et qui renvoie True si mot1 précède mot2
dans l’ordre lexicographique.

Thème 2 : Exercices bac Bdd 7/8 NSI Tle

def ordre_lex(mot1, mot2):
if mot1 == "":

return True
elif mot2 == "":

return False
else:

c1 = mot1[0]
c2 = mot2[0]
if c1 < c2:

return True
elif c1 > c2:

return False
else:

return ordre_lex(mot1[1:], mot2[1:])

14) Proposer une version itérative de la fonction ordre_lex.
Solution : On peut écrire :
def ordre_lex(mot1, mot2):

n1 = len(mot1)
n2 = len(mot2)
i = 0
while i < n1 and i < n2:

if mot1[i] < mot2[i]:
return True

elif mot1[i] > mot2[i]:
return False

i += 1
return n1 <= n2

Ou alors :
def ordre_lex(mot1, mot2):

n = min(len(mot1), len(mot2))
for i in range(n):

if mot1[i] < mot2[i]:
return True

elif mot1[i] > mot2[i]:
return False

return len(mot1) <= len(mot2)

Thème 2 : Exercices bac Bdd 8/8 NSI Tle

