Lycée Les 3 SOURCEs Bourg-Les-Valence

NSI Tle Année 2025-26
Feuille exercices de bac - Bdd — Correction

Exercice 1: Cet exercice porte sur la programmation Python, la programmation orientée objet,

les bases de données relationnelles et les requétes SQL.

L'objectif est de faciliter la gestion du systeme d’information d’'un camping municipal. Les

informations nécessaires sont stockées dans une base de données relationnelle composée de

trois relations. On pourra utiliser les mots-clés SQL suivants : AND, FROM, INSERT INTO, JOIN,

ON, SELECT, SET, UPDATE, VALUES, WHERE.

Voici le schéma des deux premieéres relations:

Client (id_client, nom, prenom, adresse, ville, pays, telephone)

Reservation (id_reservation , #id_client, #id_emplacement, nombre_personne,
date_arrivee, date_depart)

Dans ce schéma:

* la clé primaire de chaque relation est définie par son attribut souligné;
* les attributs précédés de # sont les clés étrangeres.

La troisieme relation est appelée Emplacement et elle contient tous les emplacements du
camping. Le tableau ci-dessous en donne un extrait.

Emplacement
id_emplacement nom localisation | tarif_journalier
1 myrtille A4 25
2 mirabelle D1 35
3 mangue B2 29.90
4 mandarine B1 25
5 mure C3 29.90
6 melon A2 25

Partie A

1) Citer deux avantages a utiliser une base de données relationnelle plutot qu'un fichier
texte ou un fichier tableur.
Solution : Cela permet d’assurer la cohérence des données, de faciliter les requétes et de
faire plusieurs tables.
2) Quelle doit étre la caractéristique d’un attribut pour pouvoir étre utilisé en tant que clé
primaire?
Solution : Il faut que toutes ses valeurs soient uniques.
3) Dans larelation Reservation, quel est le role des clés étrangeres id_client et id_emplacement?

Solution : Les clés étrangeres servent a relier la réservation au client qui l'a faite et a
I’emplacement qui est loué.

4) Donner le schéma relationnel de la relation Emplacement en précisant la clé primaire et
le type de chacun des attributs.

Solution : Emplacement (id_emplacement (INT), nom (TEXT), localisation (CHAR(2)),
tarif_journalier (FLOAT))

SELECT id_emplacement, nom, localisation
FROM Emplacement
WHERE tarif_journalier = 25;

5) A partir de I'extrait du contenu de
la relation Emplacement donner le
résultat de la requéte ci-contre:

1/8

Solution : On obtient:

id_emplacement nom localisation
1 myrtille A4
4 mandarine B1
6 melon A2

6) Ecrire une requéte permettant de donner le nom et le prenom de tous les clients habitant
a ’Strasbourg’.

Solution : On peut faire:
‘SELECT nom, prenom FROM Client WHERE ville = "Strasbourg";

7) Ecrire une requéte permettant d’ajouter un nouveau client:

¢ id_client 42; e adresse ’28 rue des Capucines’;
e nom 'CODD’ ; e ville ’Lyon’ ;
* prénom ’Edgar’; * pays ’'France’;
* numéro de téléphone *0555555555".
Solution :

INSERT INTO CLient VALUES (42, 'CODD', 'Edgar', '28 rue des Capucines',
'Lyon', 'France', '8555555555") ;

8) Ecrire une requéte SQL permettant de récupérer les informations ci-dessous concernant
la réservation dont I'identifiant id_reservationest 18:

e Client.nom * Reservation.date_arrivee

e Client.prenom * Reservation.date_depart

e Reservation.nombre_personne e Emplacement.tarif_journalier
Solution :

SELECT Client.nom, prenom, nombre_personne, date_arrivee,
date_depart, tarif_journalier FROM Client
JOIN Reservation ON Client.id_client = Reservation.id_client
JOIN Emplacement ON Emplacement.id_emplacement=Reservation.id_emplacement
WHERE id_reservation = 18;

Partie B

Dans cette partie, on souhaite éditer une facture correspondant au séjour d’un client. Pour
cela, on dispose d’une fonction Python qui récupere aupres de la base de données, a la
maniere de la question 8, les informations concernant la réservation voulue et renvoie le
résultat sous forme d’un tuple contenant trois objets respectivement des classes Client,
Reservation et Emplacement.

from datetime import datetime

class Client:
def __init__(self, nom, prenom, adresse, ville, pays, telephone):

self.nom = nom
self.prenom = prenom
self.adresse = adresse
self.ville = ville
self.pays = pays
self.telephone = telephone

class Reservation:
def __init__(self, id_reservation, nombre_personne,
date_arrivee, date_depart):

Théme 2 : Exercices bac Bdd 2/8 NSI Tle

self.id_reservation = id_reservation
self.nombre_personne = nombre_personne
self.date_arrivee = date_arrivee
self.date_depart = date_depart

def nb_jours(self):

""" renvoie, a l'aide de l'attribut days de la classe
timedelta, un entier correspondant
au nombre de jours passés au camping.

return (self.date_depart - self.date_arrivee).days

class Emplacement:
def __init__(self, nom, tarif_journalier):
self.nom = nom
self.tarif_ journalier = tarif_journalier

9) Expliquer pourquoi le terme self est utilisé comme parametre pour les méthodes des
classes Client, Reservation et Emplacement.
Solution : self permet de faire référence a l'objet utilisé pour appeler les méthodes ou
pour accéder aux attributs.

10) Instancier une variable client01 de la classe Client représentant un client se nommant
CODD Edgar habitant au 28 rue des Capucines a Lyon, France, ayant pour numéro de
téléphone le 0555555555.

Solution :

‘client@l = Client('CODD', 'Edgar', '28 rue des Capucines', 'Lyon', 'France', '0555555555"

On considére un tuple constitué de trois objets, respectivement dans cet ordre, des classes
Client, Reservation et Emplacement. On souhaite écrire une fonction qui renvoie le mon-
tant du par ce client pour cet emplacement et pour cette durée de séjour. Sachant qu’au tarif
journalier de location de I'emplacement il faut ajouter une taxe de séjour de 2,20 € par jour
et par personne.

Exemple de calcul du montant a régler pour un client ayant réservé pour 4 personnes pen-
dant 12 jours un emplacement a 30 € la journée:

>>> 30 * 12 + 4 * 2.20 * 12
465.6

11) Compléter la derniere ligne de la fonction montant_a_regler.

def montant_a_regler(triplet):
""" renvoie le montant en euros a régler pour cette réservation
client, reservation, emplacement = triplet
nbj = reservation.nb_jours()
tarif = emplacement.tarif_journalier
nbp = reservation.nombre_personne
return nbj*tarif + nbp*2.20%nbj

Chaque facture doit posséder ce que l'on appelle communément un numéro de facture
unique. En réalité il s’agit d’une chaine de caracteres. Pour ses factures, depuis 2018, le cam-
ping a adopté le format 'AAAA-MMM-xxx' composé des trois chaines de caracteres ci-dessous:
* 'AAAA" une année comprise entre 2018 et 2024 ;

e 'MMM' les trois premieres lettres du mois en anglais ;

Théme 2 : Exercices bac Bdd 3/8 NSI Tle

 'xxx' désigne trois chiffres.

On décide d’écrire une fonction facture_est_valide pour tester si une chaine de caracteres
représente un numeéro de facture valide ou non. Voici quelques exemples du comportement
attendu de la fonction facture_est_valide.

>>> facture_est_valide('2024-MAY-230")
True
>>> facture_est_valide('2012-MAY-230")
False
>>> facture_est_valide('2024-MAI-230")
False
>>> facture_est_valide('2024-JUN-23")
False

On considere le programme suivant:

1 |calendrier = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN',
2 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']
3

4 |def separe(chaine):

5 # renvoie une liste constituée de chaines qui étaient
6 # séparées par le caractere -

7 return chaine.split('-")

8

9 |def que_des_chiffres(chaine):

10 """ renvoie vrai si chaine n'est constituée que
11 des caractéres de 0 a 9 faux sinon """
12 for car in chaine:

13 if not(car in "0123456789"):

14 return False

15 return True

17 |def facture_est_valide(chaine):

18 """ renvoie vrai si chaine est une chaine de

19 caractéres conforme au modele de facture """

20 partie = separe(chaine)

21 if not(len(partie) == 3):

22 return False

23 annee, mois, numero = partie[0], partie[l], partie[2]
24 if not(que_des_chiffres(annee)):

25 return False

26 if not(len(annee) == 4) or not(2018 <= annee <= 2024):
27 return False

28 # Reste a faire vérifier les mois MMM

29 .

30 # Reste a faire vérifier le numéro xxx

31 e

32 return True

On rappelle que la fonction split en Python divise une chaine de caracteres en une liste de
sous-chaines en fonction d’un séparateur spécifié.

Par exemple:

texte = 'Bonjour-le-monde'

Théme 2 : Exercices bac Bdd 4/8 NSI Tle

1 1

separateur = '-
resultat = texte.split(separateur)
donne comme résultat ['Bonjour', 'le', 'monde']

12) Expliquer pourquoi une erreur se produit a I’exécution de la fonction facture_est_valide
donnée ci-dessus.

Solution : A la ligne 26, I'expression 2018 <= annee <= 2024 compare des nombres a
un texte (annee). Cela provoque une erreur.

13) Proposer une correction du code pour que cette erreur ne se produise plus.

Solution : On peut mettre 2018 <= int(annee) <= 2024 a la place.

14) Compléter le code afin de vérifier les mois (ligne 29) et le numéro (ligne 31) dans la
fonction facture_est_valide. Pour chaque vérification, il est possible d’insérer une ou
plusieurs lignes.

Solution : Il faut rajouter:

Reste a faire vérifier les mois MMM

if mois not in calendrier:
return False

Reste a faire vérifier le numéro xxx

if len(numero) != 3 or not que_des_chiffres(numero):
return False

return True

Exercice 2 : Cet exercice porte sur les bases de données relationnelles, les requétes SQL et la
programmation en Python.

L’énoncé de cet exercice utilise des mots-clés du langage SQL suivants : SELECT, FROM, WHERE,
JOIN ... ON, UPDATE ... SET, INSERT INTO ... VALUES ..., COUNT, ORDER BY.

La clause ORDER BY suivie d’un attribut permet de trier les résultats par ordre croissant de
’attribut précisé. SELECT COUNT (+) renvoie le nombre de lignes d’une requéte.

Amélie souhaite organiser sa collection de CD. Elle a commencé par enregistrer toutes les
informations sur un fichier CSV mais elle trouve que la recherche d’informations est longue
et fastidieuse. Elle repense a son cours sur les bases de données et elle se dit qu’elle doit
pouvoir utiliser une base de données relationnelle pour organiser sa collection.

Partie A

Dans cette partie on utilise une seule table. Voici un extrait de la table Chanson.

Chanson

id titre album groupe
1 Sunburn Showbiz Muse
2 Muscle Museum Showbiz Muse
3 Showbiz Showbiz Muse
4 New Born Origin of Symmetry Muse
5 Sing for Absolution Absolution Muse
6 Hysteria Absolution Muse
7 | Welcome too the Jungle | Appetite for Destruction | Guns N” Roses
8 Muscle Museum Hullabaloo Muse
9 Showbiz Hullabaloo Muse

1) Lattribut titre peut-il étre une clé primaire pour la table Chanson? Justifier.
Solution : Il y a 2 fois le titre Muscle Museum. Cet attribut ne peut donc pas étre une clé
primaire.

2) Donner le résultat de la requéte suivante:
SELECT titre, album FROM Chanson WHERE groupe = "Guns N' Roses";

Théme 2 : Exercices bac Bdd 5/8 NSI Tle

Solution : On obtient les titres des chansons et albums de Guns N” Roses. Depuis l'extrait,
on obtient juste Welcome to the Jungle de I'album Appetite for Destruction.

3) Ecrire une requéte SQL permettant d’obtenir tous les titres des chansons de I’album
Showbiz dans l'ordre croissant.
Solution :

SELECT titre, FROM Chanson
WHERE album = "Showbiz"
ORDER BY titre;

4) Ecrire une requéte SQL permettant d’ajouter la chanson dont le titre est Megalomania de
I’lalbum Hullabaloo du groupe Muse.

INSERT INTO Chanson VALUES (10, '"Megalomania’, "Hullabaloo’, ’"Muse’);
Amélie a remarqué une faute de frappe dans Chanson
la chanson Welcome too the Jungle qui s’écrit id titre id_album
normalement Welcome to the Jungle. 1 Sunburn 1
5) Ecrire une requéte SQL permettant de 2 Muscle Museum 1
corriger cette erreur. 3 Showbiz 1
Solution : 4 New Born 2
UPDATE Chanson 5 Sing for Absolution 4
SET titre = 'Welcome to the Jungle' 6 Hysteria 4
WHERE titre = 'Welcome too the Jungle' 7 | Welcome to the Jungle 5
8 Muscle Museum 3
Partie B 9 Showbiz 3
Dans cette partie on utilise trois tables. Voici
des extraits des trois tables Chanson, Album et
Groupe.
Album
id titre année | id_groupe Groupe
1 Showbiz 1999 1 d nom
2 Origin of Symmetry 2001 1 11 Muse
3 Hullabaloo 2002 1 Gun N Roses
4 Absolution 2003 1
5 | Appetite for Destruction | 1987 2

6) Expliquer l'intérét d’utiliser trois tables Chanson, Album et Groupe au lieu de regrouper
toutes les informations dans une seule table.

Solution : Séparer les données en 3 tables permet de ne pas avoir a répéter les informa-
tions sur chaque groupe ou sur chaque album a chaque chanson.

7) Expliquer le role de l'attribut id_album de la table Chanson.

Solution : Cet attribut sert de clé étrangere. Il sert a relier la chanson a 1’album corres-
pondant.

8) Proposer alors un schéma relationnel pour cette version de la base de données. On pen-
sera a bien spécifier les clés primaires en les soulignant et les clés étrangeres en les faisant
précéder par le symbole #.

Solution : Chanson (id, titre, #id_album)
Album (id, titre, annee, #id_groupe)
Groupe (id, nom)

9) Ecrire une requéte SQL permettant d’obtenir tous les noms des albums contenant la

chanson Showbiz.

Théme 2 : Exercices bac Bdd 6/8 NSI Tle

Solution :

SELECT Album.titre FROM Album
JOIN Chanson ON id_album = Album.
WHERE Chanson.titre = 'Showbiz';

id

10) Ecrire une requéte SQL permettant
d’obtenir tous les titres avec le nom de
I’album des chansons du groupe Muse.

WHERE g.nom =

SELECT COUNT(x) AS tot FROM Album AS a
JOIN Groupe AS g ON a.id_groupe =
'Muse';

g.id

11) Décrire par une phrase ce qu’effectue la
requéte SQL ci-contre:

Solution :
10) On peut écrire:

SELECT Chanson.titre, Album.titre FROM Chanson
JOIN Album ON id_album = Album.id

JOIN Groupe ON id_groupe = Groupe.id

WHERE Groupe.nom = 'MUSE';

11) On obtient le nombre d’albums du groupe Muse.

Partie C
Dans cette partie, on utilise Python.

Amélie a remarqué que son professeur ne parle jamais d’ordre alphabétique mais d’ordre

lexicographique lorsqu’il fait une requéte avec ORDER BY.

Elle a compris qu’il s’agissait de 'ordre du dictionnaire mais elle se demande comment elle
pourrait elle-méme écrire une fonction ordre_lex(motl, mot2) de comparaison entre deux

chaines de caracteres en utilisant l’'ordre lexicographique. La fonction ordre_lex(motl, mot2)

prend en arguments deux chaines de caracteres et renvoie un booléen. Une rapide recherche

lui permet de trouver le résultat suivant:

Lorsque I'on compare deux chaines de caractéres suivant l'ordre lexicographique, on commence
par comparer les deux premiers caractéres de chacune des deux chaines, puis en cas d’égalité on
s’intéresse au second, et ainsi de suite. Le classement est donc le méme que celui d’un dictionnaire.
Si lors de ce procédé on dépasse la longueur d’une seule des deux chaines, elle est considérée plus
petite que l'autre. Lorsqu’on dépasse la longueur des deux chaines au méme moment, elles sont

nécessairement égales.

Amélie commence par écrire |assert ordre_lex("", "a") == True

quelques assertions que sa fonc- |assert ordre_lex("b", "a") == False

tion devra vérifier. assert ordre_lex("aaa", "aaba") == True
12) Compléter les assertions ci-dessus.

On suppose que les chaines de caractéeres motl etmot2 nesont |>>s "" < "g"

composées que des lettres de l’alphabet, en minuscule, et la |True

comparaison entre deux lettres peut se faire avec les opéra- |>>s "p" == "3"

teurs classiques == et <. False

Par exemple:

>>> motl = "abcde"

Enfin, le slicemot1[1:] renvoie la chaine de caractere demotl |>>> mot2 = mot1[1:]

privée de son premier caractere. >>> mot2

Par exemple: "bcde"

13) Recopier et compléter la fonction récursive ordre_lex ci-dessous qui prend pour para-
metre deux chaines de caracteres motl et mot2 et qui renvoie True si motl précede mot2

dans l'ordre lexicographique.

Théme 2 : Exercices bac Bdd 7/8

NSI Tle

def ordre_lex(motl, mot2):
if motl == "":
return True
elif mot2 == "":
return False
else:
cl = motl[0]
c2 mot2[0]
if cl < c2:
return True
elif cl1 > c2:
return False
else:
return ordre_lex(motl[1:], mot2[1:])

14) Proposer une version itérative de la fonction ordre_lex.
Solution : On peut écrire:

def ordre_lex(motl, mot2):
nl = len(motl)
n2 = len(mot2)
i=0
while i < nl and i < n2:
if motl[i] < mot2[i]:
return True
elif motl[i] > mot2[i]:
return False
i+=1
return nl <= n2

Ou alors:

def ordre_lex(motl, mot2):
n = min(len(motl), len(mot2))
for i in range(n):
if motl[i] < mot2[i]:
return True
elif motl1[i] > mot2[i]:
return False
return len(motl) <= len(mot2)

Théme 2 : Exercices bac Bdd 8/8 NSI Tle

