
Lycée Les 3 Sources Bourg-Lès-Valence
NSI Tle – Thème 1 Année 2025-26

Arbres – Exercices de bac

Exercice 1 : Cet exercice porte sur la programmation objet, la récursivité, les arbres binaires et
les systèmes d’exploitation.
Dans cet exercice, on travaille dans un environnement Linux. On considère l’arborescence
de fichiers de la figure 1.

home

documents

cours administratif personnel

multimedia

images videos

films

Figure 1. Arborescence de fichiers

Partie A

1) Le répertoire courant est home. Donner une commande permettant de connaître le contenu
du dossier documents.
Solution : Il suffit de faire ls documents.

On suppose que l’on se trouve dans le dossier cours et que l’on exécute la commande
mv ../../multimedia /home/documents

2) Indiquer la modification que cela apporte dans l’arborescence de la figure 1.
Solution : Le dossier multimedia passe dans documents.

home

documents

cours administratif personnel multimedia

images videos

films

On considère le code suivant :

class Arbre:
def __init__(self, nom, g, d):

self.nom = nom
self.gauche = g
self.droit = d

1/12

def est_vide(self):
return self.gauche is None and self.droite is None

def parcours(self):
print(self.nom)
if self.gauche != None:

self.gauche.parcours()
if self.droit != None:

self.droit.parcours()

3) Donner une raison qui justifie que le code précédent ne permet pas de modéliser l’arbo-
rescence de fichiers de la figure 1.
Solution : Cette classe permet de représenter des arbres binaires. Par contre un dossier
peut un nombre de sous-dossiers différents de 2, comme documents. Cette classe n’est
donc pas adaptée.

4) Donner le nom du parcours réalisé par le code précédent.
Solution : On affiche la racine avant de faire les appels récursifs. C’est donc un parcours
préfixe.

5) Donner la liste des dossiers dans l’ordre d’un parcours en largeur de l’arborescence. On
ne demande pas d’écrire ce parcours en Python.
Solution : On va obtenir home, documents, multimedia, cours, administratif, personnel,
images, videos, films.

Partie B
Pour pouvoir modéliser l’arborescence de fichiers de la figure 1, on propose l’implémenta-
tion suivante. L’attribut fils est une variable de type list contenant tous les dossiers fils.
Cette liste est vide dans le cas où le dossier est vide.

class Dossier:
def __init__(self, nom, liste):

self.nom = nom
self.fils = liste # liste d'objets de la classe Dossier

6) Écrire le code Python d’une méthode est_vide qui renvoie True lorsque le dossier est
vide et False sinon.

def est_vide(self):
return self.fils == []

7) Écrire le code Python permettant d’instancier une variable var_multimedia de la classe
Dossier représentant le dossier multimedia de la figure 1. Attention : cela nécessite
d’instancier tous les nœuds du sous-arbre de racine multimedia.
val_films = Dossier("films", [])
val_videos = Dossier("videos", [val_films])
val_images = Dossier("images", [])
var_multimedia = Dossier("multimedia", [var_images, var_videos])

8) Recopier et compléter sur votre copie le code Python de la méthode parcours suivante
qui affiche les noms de tous les descendants d’un dossier en utilisant l’ordre préfixe.

Thème 1 : Arbres – Exercices de bac 2/12 NSI Tle

def parcours(self):
print(self.nom)
for f in self.fils:

f.parcours()

9) Justifier que cette méthode parcours termine toujours sur une arborescence de fichiers.
Solution : À chaque étape on descend dans l’arborescence. On finira par arriver sur des
dossiers vides, puisqu’il y a un nombre fini de dossiers.

10) Proposer une modification de la méthode parcours pour que celle-ci effectue plutôt un
parcours suffixe (ou postfixe).
Solution : Il faut afficher le nom du dossier à la fin.

def parcours(self):
for f in self.fils:

f.parcours()
print(self.nom)

11) Expliquer la différence de comportement entre un appel à la méthode parcours de la
classe Dossier et une exécution de la commande UNIX ls.
Solution : La commande ls n’est pas récursive et n’affiche que le contenu du dossier en
cours ou de celui demandé.

On considère la variable var_videos de type Dossier représentant le dossier videos de la
figure 1. On souhaite que le code Python var_videos.mkdir("documentaires") crée un
dossier documentaires vide dans le dossier var_videos.

12) Écrire le code Python de la méthode mkdir.
def mkdir(self, nom):

self.fils.append(Dossier(nom, []))

13) Écrire en Python une méthode contient(self, nom_dossier) qui renvoie True si l’ar-
borescence de racine self contient au moins un dossier de nom nom_dossier et False
sinon.

def contient(self, nom):
if self.nom == nom:

return True
else:

for f in self.fils:
if f.contient(nom):

return True
return False

14) Avec l’implémentation de la classe Dossier de cette partie, expliquer comment il serait
possible de déterminer le dossier parent d’un dossier donné dans une arborescence don-
née. On attend ici l’idée principale de l’algorithme décrite en français. On ne demande
pas d’implémenter cet algorithme en Python.
Solution : Il faut parcourir l’arborescence en cherchant un dossier qui contient le dossier
actuel. Cela peut être problématique s’il y a plusieurs dossiers de même nom.

15) Proposer une modification dans la méthode __init__ de la classe Dossier qui permet-
trait de répondre à la question précédente beaucoup plus efficacement et expliquer votre
choix.
Solution : On peut rajouter un attribut parent et rajouter un paramètre permettant d’ob-
tenir cette valeur dans les paramètres du constructeur. Il faut aussi modifier mkdir.

Thème 1 : Arbres – Exercices de bac 3/12 NSI Tle

class Dossier:
def __init__(self, nom, liste, parent=None):

self.nom = nom
self.fils = liste # liste d'objets de la classe Dossier
self.parent = parent

def mkdir(self, nom):
self.fils.append(Dossier(nom, [], self))

Exercice 2 : Cet exercice traite des arbres et de l’algorithmique.
Dans cet exercice, la taille d’un arbre est égale au nombre de ses nœuds et on convient que
la hauteur d’un arbre ne contenant qu’un nœud vaut 1.
On utilisera la définition suivante : un arbre binaire de recherche est un arbre binaire, dans
lequel :
• on peut comparer les valeurs des nœuds : ce sont par exemple des nombres entiers, ou des

lettres de l’alphabet ;
• si x est un nœud de cet arbre et y est un nœud du sous-arbre gauche de x, alors il faut que
y.valeur < x.valeur.

• si x est un nœud de cet arbre et y est un nœud du sous-arbre droit de x, alors il faut que
y.valeur ≥ x.valeur.

1) Parmi les trois arbres dessinés ci-dessous, entourer celui qui n’est pas un arbre binaire de
recherche. Justifier.

2

4

11 18

15

7

29

46

74

80

53

20

Arbre 1

2

4

11 18

15

7 29

20

74

80

53

46

Arbre 2

2

4

11 18

15

7

20

46

74

80

53

29

Arbre 3

Une classe ABR, qui implémente une structure d’arbre binaire de recherche, possède l’inter-
face suivante :

class ABR:
def __init__(self, valeur, sa_gauche, sa_droit):

Thème 1 : Arbres – Exercices de bac 4/12 NSI Tle

self.valeur = valeur # valeur de la racine
self.sa_gauche = sa_gauche # sous-arbre gauche
self.sa_droit = sa_droit # sous-arbre droit

def inserer_noeud(self, valeur):
"""Renvoie un nouvel ABR avec le nœud de valeur `valeur`
inséré comme nouvelle feuille à sa position correcte"""
code non étudié dans cet exercice

On prendra la valeur None pour représenter un sous-arbre vide.
2) La construction d’un ABR se fait en insérant progressivement les valeurs à partir de la

racine : la méthode inserer_noeud (dont le code n’est pas étudié dans cet exercice) place
ainsi un nœud à sa “bonne place” comme feuille dans la structure, sans modifier le reste
de la structure. On admet que la position de cette feuille est unique.

a) En utilisant les méthodes de la classe ABR:

• écrire l’instruction Python qui permet d’instancier un objet a0,
de type ABR, ayant un seul nœud (la racine) de valeur 18.
a0 = ABR(18, None, None) 12 36

18 ABR a0

• écrire une séquence d’instructions qui permet ensuite d’insérer dans l’objet a0 les
deux feuilles de l’arbre de valeurs 12 et 36.
a0.inserer_noeud(12)
a0.inserer_noeud(36)

Selon l’ordre dans lequel les valeurs sont insérées, on construit des ABR ayant des struc-
tures différentes.

Voilà par exemple ci-dessous un ABR (nommé
a1) obtenu en créant une instance de type
ABR ayant un seul nœud (la racine) de valeur
24 puis en insérant successivement les valeurs
dans l’ordre suivant : 21;35;19;23;32;39;3;20 3 20

19 23

21

32 39

35

24

ABR a1
b) Dessiner l’ABR (nommé a2) que l’on obtiendrait en créant une instance de type ABR

ayant un seul nœud (la racine) de valeur 3 puis en insérant successivement les valeurs
dans l’ordre suivant :

20;19;21;23;32;24;35;39

19

24

39

35

32

23

21

20

3

ABR a2

c) Donner la hauteur des ABR a1 et a2. Hauteur de a1 : 4. Hauteur de a2 : 7

Thème 1 : Arbres – Exercices de bac 5/12 NSI Tle

d) On complète la classe ABR avec une méthode calculer_hauteur qui renvoie la hau-
teur de l’arbre.
Compléter les deux commentaires et l’instruction manquante dans le code ci-après
de cette méthode.
On pourra utiliser la fonction Python max qui prend en paramètres deux nombres et
renvoie le maximun de ces deux nombres.

def calculer_hauteur(self):
"""Renvoie la hauteur de l'arbre"""
if self.sa_droit is None and self.sa_gauche is None:

l'arbre est réduit à une feuille
return 1

elif self.sa_droit is None:
arbre avec une racine et seulement un sous-arbre gauche
return 1 + self.sa_gauche.calculer_hauteur()

elif self.sa_gauche is None:
arbre avec une racine et seulement un sous-arbre droit
return 1 + self.sa_droit.calculer_hauteur()

else:
arbre avec 2 sous-arbres
return 1 + max(self.sa_gauche.calculer_hauteur(),

self.sa_droit.calculer_hauteur())

3) La différence de hauteur entre l’ABR a1 et l’ABR a2 aura des conséquences lors de la
recherche d’une valeur dans l’ABR.
a) Compléter le code ci-dessous de la méthode rechercher_valeur, qui permet de tes-

ter la présence ou l’absence d’une valeur donnée dans l’ABR :
def rechercher_valeur(self, v):

"""Renvoie True si la valeur v
est trouvée dans l'ABR et False sinon"""
if v == self.valeur:

return True
elif v < self.valeur and self.sa_gauche is not None:

return self.sa_gauche.rechercher_valeur(v)
elif v > self.valeur and self.sa_droit is not None:

return self.sa_droit.rechercher_valeur(v)
else:

return False

b) On admet que le nombre de fois où la méthode rechercher_valeur est appelée pour
rechercher la valeur 39 dans l’ABR a2 est 7.
Donner le nombre de fois où la méthode rechercher_valeur est appelée pour re-
chercher la valeur 20 dans l’ABR a1. 4

4) Il existe des algorithmes pour modifier la structure d’un ABR, afin par exemple de dimi-
nuer la hauteur d’un ABR. On s’intéresse aux algorithmes appelés rotation, consistant à
faire “pivoter” une partie de l’arbre autour d’un de ses nœuds.

L’exemple suivant permet d’ex-
pliquer l’algorithme pour réa-
liser une rotation droite d’un
ABR autour de sa racine :

12 17

15 30

20

12

17 30

20

15

Thème 1 : Arbres – Exercices de bac 6/12 NSI Tle

• On appelle pivot le sous-arbre gauche de la racine de l’arbre

12 17

15 30

20

pivot

• Le sous-arbre droit du pivot devient le sous-arbre
gauche de la racine

12 17

15

17 30

20

• La racine ainsi modifiée devient le sous-arbre droit du pivot et la
racine du pivot devient la nouvelle racine de l’ABR 12

17 30

20

15

On admet que ces transformations conservent la propriété d’ABR de l’arbre.
La méthode rotation_droite ci-après renvoie une nouvelle instance de type ABR, corres-
pondant à une rotation droite de l’objet de type ABR à partir duquel elle est appelée :

def rotation_droite(self):
"""Renvoie une instance d'un ABR après une rotation droite.
On suppose qu'il existe un sous-arbre gauche"""
pivot = self.sa_gauche
self.sa_gauche = pivot.sa_droit
pivot.sa_droit = self
return ABR(pivot.valeur, pivot.sa_gauche, pivot.sa_droit)

Pour réaliser une rotation gauche, on suivra alors l’algorithme suivant :
• on appelle pivot le sous-arbre droit de la racine de l’arbre,
• le sous-arbre gauche du pivot devient le sous-arbre droit de la racine,
• la racine ainsi modifiée devient le sous-arbre gauche du pivot et la racine du pivot devient

la nouvelle racine de l’ABR.

a) En suivant les différentes étapes de cet algorithme, dessiner l’arbre obtenu après une
rotation gauche de l’ABR suivant :

15

22

38

26

25

20

15 22

20

38

26

25

b) Écrire le code d’une méthode Python rotation_gauche qui réalise la rotation gauche
d’un ABR autour de sa racine.

def rotation_gauche(self):
"""Renvoie une instance d'un ABR après une rotation gauche.
On suppose qu'il existe un sous-arbre droit"""
pivot = self.sa_droit
self.sa_droit = pivot.sa_gauche
pivot.sa_gauche = self
return ABR(pivot.valeur, pivot.sa_gauche, pivot.sa_droit)

Thème 1 : Arbres – Exercices de bac 7/12 NSI Tle

Exercice 3 : Cet exercice porte sur les arbres binaires de recherche et les algorithmes associés
Les arbres binaires de recherche considérés ici sont des arbres binaires où les nœuds dési-
gnent des chaînes de caractères et pour lesquelles la valeur de chaque nœud est supérieure à
celles des nœuds de son enfant gauche, et inférieure à celles des nœuds de sont enfant droit.
La relation d’ordre notée < est ici la relation d’ordre alphabétique.
Dans cet exercice, on utilisera la convention suivantes : la hauteur d’un arbre binaire ne
comportant qu’un nœud est 1.
Dans cet exercice les arbres binaire de re-
cherche ne contiennent que des noms de
pays tous distincts.
On considère l’arbre binaire de recherche
ci-contre :

"Italie"

"Suede"

"Norvege"

"France"

"Hongrie""Autriche"

1) a) Donner sans justification la hauteur de cet arbre.
Solution : La hauteur est de 3.

b) Donner sans justification la valeur booléenne de l’expression "Allemagne" < "Portugal".

Solution : "Allemagne" < "Portugal" vaut True.
c) Compléter l’arbre ci-dessous après l’ajout de "Allemagne", de "Portugal" et de
"Luxembourg" dans cet ordre. "Italie"

"Suede"

"Norvege"

"Portugal""Luxembourg"

"France"

"Hongrie""Autriche"

"Allemagne"

Pour les questions 2, 3 et 4 on traite de l’arbre initial, donc sans l’ajout de "Allemagne",
"Portugal" et "Luxembourg".
2) On souhaite parcourir l’arbre. Indiquer l’ordre de visite des nœuds lors d’un parcours en

largeur. Solution : "Italie", "France", "Suede", "Autriche", "Hongrie", "Norvege"
3) On souhaite écrire une fonction pour déterminer si le nom d’un pays est dans l’arbre.

On dispose pour cela de :
• la fonction est_vide qui prend en paramètre un arbre arb. Cette fonction renvoie True

si l’arbre arb est vide, False sinon ;

• la fonction gauche qui prend en paramètre un
arbre arb et renvoie son sous-arbre gauche.
Exemple : si A est notre arbre initial, gauche(A)
renvoie l’arbre ci-contre.

"France"

"Hongrie""Autriche"

• la fonction droite qui prend en paramètre un arbre arb et
renvoie son sous-arbre droit.
Exemple : si A est notre arbre initial, droite(A) renvoie
l’arbre ci-contre.

"Suede"

"Norvege"

• la fonction racine qui prend en paramètre un arbre arb et renvoie la valeur de la
racine de l’arbre.
Exemple : racine(A) renvoie "Italie".

Recopier, en complétant les lignes 2, 6, 7 et 10, la fonction recherche donnée ci-dessous
et écrite en Python. Cette fonction prend en paramètre un arbre arb et une valeur val.

Thème 1 : Arbres – Exercices de bac 8/12 NSI Tle

L’appel recherche(arb, val) renvoie un booléen (True si la valeur val est dans l’arbre
arb, False sinon).

1 def recherche(arb, val):
2 """ renvoie un booléen indiquant si val est dans arb """
3 if est_vide(arb):
4 return False
5 if val == racine(arb):
6 return True
7 if val < racine(arb):
8 return recherche(gauche(arb), val)
9 else:

10 return recherche(droite(arb), val)

4) Écrire une fonction récursive taille permettant de déterminer le nombre de pays pré-
sents dans un arbre.
Cette fonction prendra en paramètre un arbre arb et renverra un entier.

def taille(arb):
if est_vide(arb):

return 0
else:

return 1 + taille(gauche(arb)) + taille(droite(arb))

Exercice 4 : Cet exercice porte sur les arbres et la compression d’un fichier texte.
Quand il s’agit de transmettre de l’information sur un canal non bruité, l’objectif prioritaire
est de minimiser la taille de la représentation de l’information : c’est le problème de la com-
pression de données. Le code de Huffman (1952) est un code de longueur variable optimal,
c’est-à-dire tel que la longueur moyenne d’un texte codé est minimale. On observe ainsi des
réductions de taille de l’ordre de 20% à 90%. Ce code est largement utilisé, souvent combiné
avec d’autres méthodes de compression.
Partie A : coder du texte
On donne, en Figure 1 ci-dessous, la table d’encodage hexadécimal des caractères ISO/CEI
8859-1, dite ASCII Latin 1.
Chaque caractère est codé sur 8 bits, soit deux chiffres hexadécimaux, correspondant res-
pectivement à la ligne et à la colonne à l’intersection desquelles il figure.
Par exemple, pour la lettre ‘H’ figurant à l’intersection de la ligne ‘4x’ et de la colonne ‘x8’,
le code hexadécimal est ‘48’.
La chaîne de caractère ‘Hello_World_!’ est codé par :

‘48 65 6C 6C 6F 5F 57 6F 72 6C 64 5F 21’

Thème 1 : Arbres – Exercices de bac 9/12 NSI Tle

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF
0x

positions inutilisées
1x
2x SP ! " # $ % & ’ () * + , - . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [\] ˆ _
6x ‘ a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ˜
8x

positions inutilisées
9x
Ax NBSP ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯
Bx ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿
Cx À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
Dx Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
Ex à á â ã ä å æ ç è é ê ë ì í î ï
Fx ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Figure 1. Table ISO/CEI 88-59-1

Dans cette table, le caractère ESPACE est symbolisé par SP.
Soit la chaîne de caractères txt = "SIX ANANAS".
1) Calculer la taille en octets du texte contenu dans la variable txt. En déduire la taille en

bits nécessaire pour le stocker.
2) Donner le codage de la chaîne de caractères txt.
Partie B : Compression de Huffman
Nombre d’occurrences
On appelle nombre d’occurrences d’un symbole le nombre de répétitions de ce symbole dans
le texte étudié. Ainsi, dans la phrase “DEECDDEBFACCECCEDBAEE” on peut associer le
tableau d’occurrences ci-dessous :

Symbole A B C D E F
Nombre d’occurrences 2 2 5 4 7 1

3) Écrire le tableau d’occurrences associé à la chaîne de caractères txt.
4) Préciser à quoi correspond la somme des nombres d’occurrences.

Ce tableau d’occurrences peut être stocké dans un dictionnaire Python où les clés sont les
symboles rencontrés dans le texte et les valeurs les nombres d’occurrences de chaque sym-
bole. Ainsi, pour l’exemple ci-dessus, le dictionnaire serait :

{'D': 4, 'E': 7, 'C': 5, 'B': 2, 'F': 1, 'A': 2}.

5) Recopier et compléter le code de la fonction occurrence ci-dessous qui, pour un texte
passé en paramètre, renvoie le dictionnaire d’occurrences associé.

def occurrence(texte):
dico =
for lettre in ...:

if lettre in ...:
dico[lettre] = dico[lettre]+1

else:
...

return ...

Thème 1 : Arbres – Exercices de bac 10/12 NSI Tle

Arbre de Huffman
L’algorithme de Huffman met en œuvre plusieurs structures de données. Il opère sur un
ensemble dynamique d’arbres binaires pondérés (une forêt), structuré en file à priorité.
Initialement, la forêt est constituée d’arbres binaires,
• tous restreints à leur seule racine, dont l’étiquette est un symbole du texte ;
• et respectivement dotés d’un poids correspondant à l’effectif de ce symbole.
Une opération de greffe de deux arbres pondérés est possible : l’arbre résultant est un arbre
binaire dont :
• la racine est un nœud sans étiquette ;
• les sous-arbres gauches et droits sont les deux arbres greffés ;
• le poids est la somme des poids de ces deux sous-arbres.
La file à priorité, qui contient tous les arbres considérés, est une structure permettant
• l’extraction : le premier arbre disponible est un arbre de priorité maximale parmi tous les

arbres ;
• l’insertion : tout nouvel arbre pondéré est inséré

• après tous ceux qui ont une priorité strictement plus grande que la sienne ;
• avant tous ceux qui ont une priorité inférieure ou égale à la sienne.

Pour construire l’arbre de Huffman, tant que la forêt compte au moins deux arbres,
• les deux arbres prioritaires sont extraits de la file ;
• ils sont greffés en un nouvel arbre pondéré ;
• et celui-ci est inséré dans la file à priorité.
Une fois l’arbre construit, on pondère les arêtes en partant de la racine : 0 pour les arêtes
menant aux enfants gauches, 1 pour les arêtes menant aux enfants droits.
Le schéma de la figure ci-dessous indique comment on construit un arbre de Huffman en
fonction du tableau d’occurrences.
Pour plus de clarté, les étiquettes de tous les nœuds ont été remplacées par le poids de
l’arbre dont ils sont la racine.

6) Construire l’arbre de Huffman associé à la chaîne de caractères txt.
7) Préciser à quoi correspond le poids de la racine de cet arbre.

Codage et compression à l’aide de l’arbre de Huffman
À l’aide de l’arbre de Huffman, on peut créer une table de codage où chaque symbole est
codé par les bits lus sur le chemin entre la racine de l’arbre et la feuille correspondant au
symbole. Dans l’exemple ci-dessus, la lettre ‘F’ serait codée par 0110 et la lettre ‘E’ par 11.
8) Indiquer le type de parcours à utiliser sur l’arbre de Huffman pour réaliser cette table de

codage.
9) Donner la table de codage pour la chaîne de caractères txt.

10) Justifier le fait que le code de Huffman est un code de longueur variable.
Le codage du texte se fait ensuite caractère par caractère en utilisant la table de codage.

11) Coder la chaîne de caractères txt à l’aide du code de Huffman et de l’arbre construit à la
question 6.

12) En reprenant le résultat déterminé dans la partie A, en déduire le taux de compression
en % pour la variable txt et vérifier l’assertion du texte d’introduction : “On observe ainsi
des réductions de taille de l’ordre de 20% à 90%.”

Le taux de compression est le ratio :
encombrement initial - encombrement final

encombrement initial

Thème 1 : Arbres – Exercices de bac 11/12 NSI Tle

1

F

2

A

2

B

4

D

5

C

7

E
Etape 0

1

F

2

A

2

B

4

D

5

C

7

E

3

Etape 1

4

D

2

B

1

F

2

A

5

C

7

E

3

5

Etape 2

4

D

2

B

1

F

2

A

5

C

7

E

3

5

9

Etape 3

4

D

2

B

1

F

2

A

5

C

7

E

3

5

9

12

Etape 4

4

D

2

B

1

F

2

A

5

C

7

E

3

5

9

12

21

Etape 5

4

D

2

B

1

F

2

A

5

C

7

E

3

5

9

12

21

0

1

0

1

0 1 0 1

0

1

Etape 6

Figure 2. Construction de l’arbre de Huffman

Thème 1 : Arbres – Exercices de bac 12/12 NSI Tle

